Capítulo 14

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO

DESIGUALDADES

Definición

Se denomina desigualdad a la comparación que se establece entre dos expresiones reales, mediante los signos de relación >, <; \ge 0 \le .

Ejemplo:

Siendo, a y b números reales :

a > b a mayor que b

a < b a menor que b

 $a \ge b$ a mayor o igual que b

a < b a menor o igual que b

Observación: A los signos de relación > o < se les da el nombre de signos simples mientras que $a \ge o \le$ se les denomina signos dobles.

Axiomas de la desigualdad

1. Ley de Tricotomía

 $\forall a \land b \in R : a > b \lor a < b \lor a = b$

2. Ley de Transitividad

 $\forall a, b \land c \in R / a > b \land b > c \rightarrow a > c$

3. Ley Aditiva

 $\forall a, b \land c \in R/a > b \rightarrow a + c > b + c$

4. Ley Multiplicativa

4.1. $\forall a, b \in R \land c \in R^+ / a > b \rightarrow ac > bc$

4.2. $\forall a, b \in R \land c \in R^-/a > b \rightarrow ac < bc$

Equivalencias Usuales:

Siendo a, b, c números reales.

1. $a \ge b \Leftrightarrow a > b \lor a = b$

 $2. \hspace{1cm} a < b < c \Leftrightarrow a < b \wedge b < c$

Teoremas de la Desigualdad

1. $\forall a \in R : a^2 \ge 0$

2. $a > 0 \rightarrow \frac{1}{a} > 0$

 $a < 0 \rightarrow \frac{1}{a} < 0$

3. $a,b,c \wedge d \in R$:

a > b c > d a+c > b+d

4. $a,b,c \wedge d \in \mathbb{R}^+$:

a > b c > d a.c > b.d

5. $a,b \wedge c \in R^+$; o $a,b \wedge c \in R^-$

 $a < b < c \rightarrow \frac{1}{c} < \frac{1}{b} < \frac{1}{a}$

6. $\forall a, b \land c \in R, n \in Z^+ /$

 $a < b < c \rightarrow a^{2n+1} < b^{2n+1} < c^{2n+1}$

7. $\forall a, b \land c \in R^+, n \in Z^+$

 $a < b < c \rightarrow a^{2n} < b^{2n} < c^{2n}$

Propiedades de la desigualdad

1. $a < 0, c > 0 \land c^2 > a^2$

 $a < b < c \rightarrow 0 \le b^2 < c^2$

2. $a > 0 : a + \frac{1}{a} \ge 2$

3. $a < 0 : a + \frac{1}{a} \le -2$

Propiedad adicional:

Para números reales positivos, tenemos :

MP = Media potencial MA = Media aritmética MG = Media geométrica MH = Media Armónica

$$\mathsf{MP} \geq \mathsf{MA} \geq \mathsf{MG} \geq \mathsf{MH}$$

Para dos números : $a \wedge b$; $k \in Z^+$

$$\sqrt[k]{\frac{a^k+b^k}{2}} \geq \frac{a+b}{2} \geq \sqrt{ab} \geq \frac{2}{\frac{1}{a}+\frac{1}{b}}$$

para tres números : a, b \wedge c; k ε Z⁺

$$\sqrt[k]{\frac{a^k + b^k + c^k}{3}} \ge \frac{a + b + c}{3} \ge \sqrt[3]{abc} \ge \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$

INTERVALOS

Definición

Se denomina intervalo al conjunto cuyos elementos son números reales, dichos elementos se encuentran contenidos entre dos números fijos denominados extremos, a veces los extremos forman parte del intervalo.

1. Intervalos acotados:

Son todos aquellos intervalos cuyos extremos son reales, estos pueden ser :

1.1.Intervalo abierto:

No considera a los extremos, se presenta por existencia de algún signo de relación simple. En la recta, se tendrá:

Donde: $a < x < b \Leftrightarrow x \in a; b >$

También: xεla;b[

1.2.Intervalo cerrado:

Se considera a los extremos, se presenta por existencia de algún signo de relación doble.

En la recta real, se tendrá:

Donde: $a \le x \le b \Leftrightarrow x \varepsilon[a;b]$

También: xε(a;b)

1.3.Intervalo mixto (semi abierto o semi cerrado) : Considera sólo a uno de sus extremos para :

 $a < x \le b \Leftrightarrow x \varepsilon < a; b$

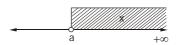
para:

 $a \le x < b \Leftrightarrow x \varepsilon[a;b>$

2. Intervalos no acotados :

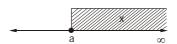
Son todos aquellos donde al menos uno de los extremos no es un número real.

2.1. Intervalo acotado inferiormente:



Donde : $a < x < \infty \Leftrightarrow x > a$

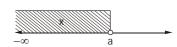
 $x \varepsilon < a; \infty >$



Donde : $a \le x < \infty \Leftrightarrow x \ge a$

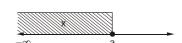
xε[a;∞>

2.2. Intervalo acotado superiormente:



Donde : $-\infty < x < a \Leftrightarrow x < a$

xε<-∞;a>



Donde : $-\infty < x \le a \Leftrightarrow x \le a$

 $x \varepsilon < -\infty; a$]

Observaciones:

- 1. Un conjunto se dice que es acotado si y solo si es acotado superiormente e inferiormente a la vez.
- 2. Para el conjunto de los números reales R, se tiene :

 $R =]-\infty;\infty[=<-\infty;\infty>$

Es evidente que $-\infty$ y ∞ no son números reales.

 Como los intervalos son conjuntos, con ellos se podrán efectuar todas las operaciones existentes para conjuntos, tales como la unión, intersección, diferencia simétrica, etc.

Clases de desigualdad

1. Desigualdad absoluta:

Es aquella que mantiene el sentido de su signo de relación para todo valor de su variable. Vemos un ejemplo :

*
$$x^2 + 2x + 10 > 0$$
; $\forall x \in R$

2. Desigualdad relativa:

Es aquella que tiene el sentido de su signo de relación para determinados valores de su variable. Veamos un ejemplo :

*
$$2x + 1 > x + 3 \rightarrow x > 2$$

INECUACIONES

Definición

Se denomina inecuación a cualquier desigualdad relativa. Los valores de la variable que verifican la inecuación forman el conjunto solución, el cual se presenta en función de intervalos.

1. Inecuaciones racionales :

1.1. Inecuaciones de primer grado (lineal)

$$ax + b \ge 0$$

$$a \wedge b \epsilon R / a \neq 0$$

1.2. Inecuaciones de segundo grado (cuadrática)

$$|ax^2 + bx + c \ge 0|$$

$$a,b \wedge c \in R/a \neq 0$$

Propiedades

I. Trinomio siempre positivo

Si:
$$ax^2 + bx + c > 0$$
: $\forall x \in R$

entonces :
$$a > 0 \land b^2 - 4ac < 0$$

II. Trinomio siempre negativo

Si:
$$ax^2 + bx + c < 0$$
; $\forall x \in R$,

entonces:
$$a < 0 \land b^2 - 4ac < 0$$

1.3. Inecuaciones de grado superior :

$$\boxed{a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n \, \gtrless \, 0}$$

$$a_{0}, a_{1}, a_{2}, \dots, A_{n} \in R / a_{o} \neq 0$$

$$n \epsilon N / n \ge 3$$

1.4. Inecuaciones fraccionarias :

$$\frac{F(x)}{H(x)} \ge 0$$
; $[H]^{\circ} \ge 1$

Resolución de la inecuación: Se recomienda utilizar el método de los puntos de corte cuya aplicación consiste en los siguientes pasos:

- Se trasladan todos los términos al primer miembro, obteniendo siempre una expresión de coeficiente principal positivo.
- 2. Se factoriza totalmente a la expresión obtenida.
- 3. Se calculan los puntos de corte. Son los valores reales de "x" obtenidos al igualar cada factor primo a cero.
- Se ubican, ordenadamente, todos los puntos en la recta real, dichos puntos originan en la recta dos o más zonas.
- 5. Se marcan las zonas obtenidas a partir de la derecha alternando los signos "+" y "-".
- 6. Si el signo de relación es > o ≥ , el conjunto solución estará formado por todas las zonas positivas, pero si el signo de relación es < o ≤ el conjunto solución lo formarán todas las zonas negativas.</p>

Ejemplo:

Resolver la inecuación :

$$x^2 + x > 6$$

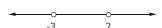
Resolución: De acuerdo con el método de los puntos de corte, procedemos así:

$$x^2 + x - 6 > 0$$

Factorizando : (x+3)(x-2) > 0

Hallando puntos : x = -3; x = 2

En la recta:



marcando zonas:

como el signo de relación es > la solución viene dada por todas las zonas positivas.

$$\therefore x \in <-\infty; -3> \cup <2; \infty>$$

Ejemplo:

Resolver: $\frac{9x+10}{x+2} < 2$

Resolución: Procedemos de un modo similar que en el ejemplo anterior:

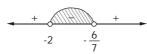
$$\frac{9x + 10}{x + 2} - 2 < 0$$

$$\frac{7x+6}{x+2}<0$$

Puntos:

$$7x + 6 = 0 \rightarrow x = -\frac{6}{7}$$

$$x + 2 = 0 \rightarrow x = -2$$



$$\therefore x \varepsilon < -2; -\frac{6}{7} >$$

Observación: En una inecuación fraccionaria, si el signo de relación es doble, sólo cerraremos los extremos que provienen del numerador.

Ejemplo:

Resolver :
$$\frac{x^2 - 5}{x^2 - x - 12} \ge 1$$

Resolución:

$$\frac{x^2 - 5}{x^2 - x - 12} - 1 \ge 0$$

$$\frac{x+7}{x^2-x-12} \ge 0$$

Observar que: $x^2 - x - 12 \equiv (x - 4)(x + 3)$

$$\frac{x+7}{(x-4)(x+3)} \geq 0$$

Puntos: $\{-7, 4 \land -3\}$

$$\therefore x \varepsilon [-7; -3 > \cup <4; \infty >$$

2. Inecuaciones Irracionales

2.1. Forma: $\sqrt[2n]{A} > B$; $n \epsilon Z^+$

se resuelve :

$$S_1 = (A \ge 0 \land B \ge 0 \land A > B^{2n})$$

$$S_2 = (A \ge 0 \land B < 0)$$

$$\therefore \quad \boxed{\mathsf{CS} = \mathsf{S}_1 \cup \mathsf{S}_2}$$

2.2. **Forma**: $\sqrt[2n]{A} < B$; $n \in Z^+$

$$CS = A \ge 0 \land B > 0 \land A < B^{2n}$$

2.3. **Forma**: $2m\sqrt{A} \ge 2n\sqrt{B}$; $m \land n \in Z^+$

$$CS = A \geq 0 \land B \geq 0 \land A^{2n} \gtrless B^{2m}$$

Ejemplo:

Resolver: $\sqrt{x+1} > x-1$

Resolución: De acuerdo con la forma (2.1), se plantea:

$$S_1: x+1 \ge 0 \land x-1 \ge 0 \land x+1 > (x-1)^2$$

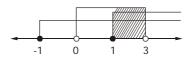
$$x + 1 \ge 0 \land x - 1 \ge 0 \land -x^2 + 3x > 0$$

$$x + 1 \ge 0 \land x - 1 \ge 0 \land x^2 - 3x < 0$$

$$x + 1 \ge 0 \land x - 1 \ge 0 \land x(x - 3) < 0$$

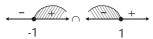


Intersectando:



Observar que : $S_1 = [1; 3 >$

$$S_2: x + 1 \ge 0 \land x - 1 < 0$$



Intersectando:

Observar que : $S_2 = [-1; 1 >$

Finalmente :
$$CS = S_1 \cup S_2$$

$$\therefore$$
 CS = [-1; 3 >

Ejemplo:

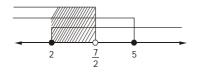
Resolver:
$$\sqrt{x-2} < \sqrt{5-x}$$

Resolución: De acuerdo con la forma (2.3) se plantea:

$$x-2 \geq 0 \wedge 5 - x \geq 0 \wedge x - 2 < 5 - x$$

$$x - 2 \ge 0 \land x - 5 \le 0 \land 2x - 7 < 0$$

Intersectando:



$$\therefore CS = [2; \frac{7}{2} >$$

VALOR ABSOLUTO (V.A.)

Definición

Dado el número real "x", la relación funcional denotada por |x| es el valor absoluto de "x", definido de la manera siguiente :

$$|x| = \begin{cases} x; x > 0 \\ 0; x = 0 \\ -x; x < 0 \end{cases}$$

Según la definición :

* |5| = 5 5 > 0* |-7| = -(-7) -7 < 0 |-7| = 7

Teoremas:

- 1. $|x| \ge 0$; $\forall x \in \mathbb{R}$
- 2. |x| = |-x|; $\forall x \in \mathbb{R}$
- 3. |x.y| = |x|.|y|; $\forall x \land y \in R$
- 4. $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$; $x \wedge y \in R / y \neq 0$
- 5. $|x^2| = |x|^2 = x^2$; $\forall x \in \mathbb{R}$
- 6. $-|x| \le x \le |x|$; $\forall x \in R$
- 7. $|x+y| \le |x| + |y|$; $\forall x \land y \in \mathbb{R}$

Propiedades:

- 1. Si: |x+y| = |x| + |y|,
 - entonces : $xy \ge 0$
- 2. Si: |x y| = |x| + |y|, entonces: $xy \le 0$

Ecuaciones con valor absoluto :

$$|x| = b; b > 0 \Leftrightarrow x = b \lor x = -b$$

Ejemplo:

Resolver: |2x-1| = 7

Resolución: Observar que : b = 7 > 0. Luego, tenemos :

$$2x-1 = 7 \lor 2x-1 = -7$$

 $2x = 8 \lor 2x = -6$
 $x = 4 \lor x = -3$

$$: CS = \{4; -3\}$$

Ejemplo:

Resolver: |5x - 1| = 2 - x

Resolución : Se plantea lo siguiente :

$$2-x > 0 \land (5x-1 = 2 \lor 5x-1 = x-2)$$

$$x - 2 < 0 \land (6x = 3 \land 4x = -1)$$

$$x < 2 \land (x = \frac{1}{2} \lor x = -\frac{1}{4})$$

Observar que :
$$x = \frac{1}{2} \text{ verifica } x < 2.$$

$$x = -\frac{1}{4} \text{ verifica } x < 2.$$

$$\therefore CS = \{\frac{1}{2}; -\frac{1}{4}\}$$

Inecuaciones con Valor Absoluto

- 1. $|x| > b \Leftrightarrow x > b \lor x < -b$
- 2. $|x| < b \Leftrightarrow b > 0 \land (-b < x < b)$
- 3. $|x| \leq |y| \Leftrightarrow (x+y)(x-y) \leq 0$

Ejemplo:

Resolver: |3x + 4| < 5

Resolución: De acuerdo con la forma (2), se plantea:

$$\underbrace{5 > 0}_{R} \land (-5 < 3x + 4 < 5)$$
R ; ? porque es una verdad

Luego, sólo se resuelve :

$$-5 < 3x + 4 < 5$$

$$-5 - 4 < 3x < 5 - 4$$

$$-9 < 3x < 1$$

$$-3 < x < \frac{1}{3}$$

$$\therefore x \varepsilon < -3; \frac{1}{3} >$$

Ejemplo:

Resolver: $x^2 \ge 3 |x| + 4$

Resolución: Se sabe que $x^2 = |x|^2$. Luego, se tendrá:

$$|x|^2 \ge 3|x| + 4$$

$$|x|^2 - 3|x| - 4 \ge 0$$

$$(|x|-4)(|x|+1) \ge 0$$

Observa que : |x|+1>0; $\forall x \in R$

En consecuencia : $|x|-4 \ge 0$

$$| x | \ge 4$$

Según la forma (1) : $x \ge 4 \lor x \le -4$

$$\therefore x \in (-\infty; -4] \cup [4; \infty)$$

EJERCICIOS PROPUESTOS

- 01. Resolver las siguientes inecuaciones :
 - I. $\frac{x-3}{2} > \frac{x-2}{5}$ Rpta.....

- II. $(x + 2)^2 > x(x 1)$ Rpta.....
- III. 3(x-5) > 5(x-2) Rpta.....
- IV. $\sqrt{2}^{x-1} > \sqrt[5]{2}^{x+3}$
- V. $\sqrt[4]{3}^{x-1} > 3^{x-2}$
- VI. $0.3^{4x-1} > 0.3^{x+2}$ Rpta.
- 02. Resolver:

$$2^{x+2} - 2^{x+3} - 2^{x+4} > 5^{x+1} - 5^{x+2}$$

- a) x < 0 b) x > 0 c) $x \le 0$

- d) x > 4 e) $x > \frac{2}{5}$
- 03. Hallar la suma de los enteros que adopta:

$$N = \frac{3x-5}{x-2}$$
; si : x $\varepsilon < -2$;1]

- a) 4
- c) 0

- d) 1
- e) 6
- Hallar lo indicado en cada caso :
 - I. $3 < x < 5 \implies \dots x^2 \dots x^2$
 - II. $-9 < x < -4 \Rightarrow \dots x^2 \dots x^2$
 - III. $-4 < x < 7 \implies \dots \qquad x^2 \dots$
 - IV. $-8 < x < 3 \implies \dots \qquad x^2 \dots$
 - V. $3 < x < 11 \Rightarrow \dots x^{-1} \dots$
 - VI. $-9 < x < -5 \Rightarrow \dots x^{-1}$
- 05. Hallar el valor de : P = |x - y|.

Donde: x, y son números enteros positivos que satisfacen las siguientes desigualdades :

$$5x - 3y > 2$$

$$2x + y < 11$$

y > 3

- a) -1 d) 8
- b) 7

c) 1

- e) 0
- Si: -10 < a < -5; -2 < b < -1; 2 < c < 5, entonces, 06. está comprendido entre :
 - a) -10 y -1
- b) -10 y 1
- c) 2 y 10

- d) 2 y 20
- e) 1 y 10

Si: m, n, pεR⁺, y además:

$$K = \frac{m^2 + n^2}{mn} + \frac{n^2 + p^2}{np} + \frac{m^2 + p^2}{mp}$$

Luego, es posible afirmar que :

- a) $K \ge 6$ b) $K \ge \frac{1}{3}$ c) $K \ge 12$
- d) $K \ge \frac{4}{3}$ e) $K \ge 3$
- 08. Resolver:

$$\frac{ax-b}{a} < \frac{bx-a}{a} < 1$$

si: 0 < a < b.

- a) $<-1; \frac{2a}{b}>$ b) $<-\infty; -1>$
- c) $<-\infty; \frac{2a}{h}>$ d) $<1; \frac{2a}{h}>$

- e) ø
- 09. Un vehículo, marchando a 25 km/h recorre un camino que mide un número entero de km. Cuando llevaba recorrida la mitad del camino, le faltaba menos de 3h 31min, y cuando llevaba recorridos 60 km le faltaban más de 4h 35min de marcha.

¿Cuál es la longitud del camino?

- a) 130 km
- b) 225 km
- c) 175 km
- d) 170 km
 - e) F.D.
- 10. Resolver:
 - I. Si : $x \in [-4; 2 >$, indicar el intervalo de variación

de:
$$f(x) = 6(x-8)^{-1}$$

II. Si: $x \in \{3, 5\}$, indicar el intervalo de variación de:

$$f(x) = \frac{2x+6}{x-1}$$

III. $x \in \{-5, 4\}$, indicar el intervalo de variación de :

$$f(x) = x^2 - 6x + 15$$

11. Resolver el sistema :

$$\left\{ \left(\frac{3}{2} \right)^{3x+5} > (1,5)^{x-1} \\ \left(\frac{2}{3} \right)^{2-x} \le (0,\hat{6})^{x-6}$$

Hallar el valor de, $E = \frac{x - y}{2}$, si : 12.

> x, y, z, son enteros positivos que satisfacen las siguientes desigualdades :

$$2x + 3y + 5z > 23$$
$$2x - y + 5z < 13$$
$$y - z > 1$$
$$y < 4$$

- a) 2/5 d) 1
- e) 2
- c) 0
- 13. Si: a > b > 0; x > 0 con relación a:

$$c = 1 + \frac{a - b}{b + x},$$

podemos afirmar que :

- a) $1 < c < \frac{a}{b}$ b) b < c < a
- c) $\frac{a}{b} < c < 1$
- d) a < c-1 < 1
- e) a < c < b
- Se sabe que el cuádruplo del número de objetos que 14. hay dentro de un depósito, es tal, que disminuido en 5, no puede exceder de 35 y que el quíntuplo del mismo número de objetos, aumentado en 2 no es menor que 50. Hallar este número.
 - a) 20
- b) 18
- c) 16

- d) 10
- e) No es posible
- 15. Un closet tiene capacidad para 60 trajes, pero, sólo hay cierto número de trajes quardados en él. Si el número de trajes se redujera a la sexta parte se ocuparía menos de la décima parte de su capacidad; pero si se duplicara el número de trajes; más de ocho trajes no podrán ser guardados por falta de espacio. ¿Cuántos trajes hay en dicho closet?
 - a) 20
- b) 25
- c) 30

- d) 35
- e) 40
- De las siguientes proposiciones : 16.

I.
$$\forall a, b, c, \varepsilon R^+ : a + b + c \ge \sqrt[3]{abc}$$

II.
$$\forall x \in \mathbb{R}^+ \land x \neq 1 : x + \frac{1}{x} > 2$$

III. $\forall a, b, c, \varepsilon R^+$.

Si: $a + b + c = 12 \rightarrow abc \le 64$ Indicar el valor de verdad de cada una.

- a) VFV
- b) VVV
- c) VFF

- d) FVF
- e) FFF

- 17. Para : a > 0 y b > 0. ¿Cuál de las siguientes expresiones es verdadera?

 - a) $\sqrt{ab} < \frac{2ab}{a+b}$ b) $\sqrt{ab} \le \frac{2ab}{a+b}$
 - c) $\sqrt{ab} a = \frac{2ab}{a+b}$ d) $\sqrt{ab} > \frac{2ab}{a+b}$
 - e) $\sqrt{ab} \ge \frac{2ab}{a+b}$
- 18. Sean p, q, r, tres números positivos diferentes, que cumplen: pqr = 1.

Entonces, la suma : s = p+q+r satisface.

- a) s > 3
- b) $3 \ge s < 4$
- c) 0 < s < 3
- e) 1 < s < 2
- Sean : $a, b \in R / ab > 1$; el menor valor :

$$E = \frac{a^2 + ab + b^2}{\sqrt{ab - 1}}$$
; es:

- a) 2 d) 8
- b) 3 e) 9
- c) 6
- Sea : x > 0; calcular el mínimo valor de la expresión : 20.

$$K = x + \frac{4}{x^2}$$

- a) 3√3
- b) $\sqrt[3]{2}$ c) $\sqrt[3]{\frac{3}{2}}$

d)
$$\sqrt[3]{\frac{2}{3}}$$

- e) 3
- 21. Resolver el sistema :

$$3x + y > -4$$

 $x - 2y < -7$
 $2x + 3y < 6$

 $\{x; y\} \subset Z$. Indicar "xy".

- a) -2 d) 6
- b) -6 e) 10
- c) 3
- 22. La suma de los dos números enteros positivos es mayor que 76; su diferencia menor que 10, y si al mayor se le suma el duplo del menor, el resultado no llega a 112. ¿Cuál es el mayor?
 - a) 34
- b) 38
- c) 42

- d) 43
- e) 83

Álgebra -

Si : x, y, z εR^+ , hallar el máximo valor de "a" en :

$$\frac{x^4+y^4+z^4+w^4}{xyzw} \ge a$$

- a) 1
- b) 2
- c) 4

- d) $\sqrt{2}$
- e) 8
- Cuando nací, papá tenía más de 20 años; hace 10 años el doble de mi edad era mayor que la de él; si tengo menos de 33 años, ¿qué edad tiene él?
 - a) 32
- b) 53

- d) 54
- e) 45
- Si: "S" es la suma de "n" cantidades positivas a, b, c, 25., entonces:

$$E = \frac{S}{S-a} + \frac{S}{S-b} + \frac{S}{S-c} + ...$$

resulta:

- e) $E \ge n^2 1$
- Sean: $a, b \in R^+$, tal que: a + b = 1. 26. Si:

$$M \le \frac{a^2}{a+1} + \frac{b^2}{b+1} < N$$
,

entonces, MN resulta:

- b) $\frac{2}{3}$

- e) $\frac{1}{4}$
- 27. A qué número entero se aproxima :

$$S = 1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[3]{10^6}}$$

- a) 14 669
- b) 14 999
- c) 14 866
- d) 14 999
- e) 14 899
- Sean: a, b, c; números no negativos, tales que: 28. a+b+c = 1, hallar el máximo del producto :

$$P = a^5b^3c^2$$

Indicar la suma de las cifras de 10⁸P.

- a) 12
- b) 13
- d) 18 e) 20

Si: 0 < b < a, Además:

$$K = \frac{a^2}{b(a+b)} + \frac{b^2}{a(a-b)}$$
;

luego, podemos afirmar que:

- a) $K \le -2$ b) $K \ge -1$
- c) $K \ge 0$

- d) $K \ge \sqrt{8}$ e) $K \ge \sqrt{8} 1$
- Si: a > 0 y $P = (1 + a) \sqrt{\frac{1}{4} + a}$, luego:

 - a) P > 1 b) P > $\frac{1}{2}$ c) P > 0
 - d) P> $-\frac{1}{2}$ e) P > 20
- 31. Resolver cada ecuación cuadrática :
 - I. $x^2 12x \le 35$
 - II. $2(x^2+1) > 5x$

 - $(x+1)^2 + (x-2)^2 \ge 29$
- Resolver cada inecuación de segundo grado:
 - 1. $x^2 3x + 1 < 0$
 - II. $2x^2 + 9x + 3 \ge 0$
 - III. $x^2 + 5x + 8 > 0$
 - IV. $x^2 2x + 5 < 0$
- 33. Determinar "m+n", si la inecuación :

$$x^2-mx+n<0$$

presenta como conjunto solución :

$$x \varepsilon < -5:3 >$$

- a) -13

- e) 2 d) -2
- 34. Determinar el menor valor de "E", si se cumple :

$$x^2 - 2x + 5 \le E$$

se verifica para todo $x \in R$.

- b) 2
- c) 3

c) -15

35. Resolver cada desigualdad:

I.
$$(x + 1)(x - 3)(x + 4) > 0$$

II.
$$(x-1)^2(x+2)^3(x-5)^5 < 0$$

III
$$(x-6)(x-4)^2(x-1)(x+3)^2 \ge 0$$

$$|V(x-1)(2-x)(x-3)| \ge 0$$

- 36. Resolver: $x^4 3x^3 + 5x^2 9x + 6 < 0$
 - a) $x \in <-\infty$; $2 > \cup <3$; $+\infty >$
 - b) $x \in <-\infty; 1> \cup <2; +\infty>$
 - c) $x \in R$
 - d) χεφ
 - e) $x \varepsilon < 1; 2 >$
- 37. Después de resolver : $x^3 + 4x^2 2x 8 < 0$ Señalar el mayor entero que verifica la desigualdad.
 - a) 0
- b) 2
- c) -2

- d) -1
- e) 1
- 38. Resolver:
 - $1. \quad \frac{x^2 4x + 3}{x^2 5} \le 0$
 - II. $x \ge \frac{1}{x}$
 - III. $x^2 \le \frac{1}{x}$
- 39. Resolver las inecuaciones :
 - $1. \quad \sqrt{x-3} \ge 2$
 - II. $\sqrt{x-5} < 3$
 - III. $\sqrt{x-8} \ge -3$
 - IV. $\sqrt{x-3} \le 0$
- 40. Indicar el intervalo solución de :

$$\sqrt{x-3} < \sqrt{7-x}$$

- a) [3;7]
- b) [3;5]
- c) [5;7]
- d) $<-\infty;5$]
- e) [5;∞ >
- 41. Resolver las inecuaciones :
 - I. $x^3 \ge 9x$
 - II. $x^4 18 < 7x^2$
 - III. $(x-5)(x^2-3) > 4(x-5)$
- 42. Resolver la inecuación : $x^2(x^2 3) > 4x(x^2 3)$ e indicar un intervalo solución.
 - a) $< -\sqrt{3} : \sqrt{3} >$
- b) $< 0: \sqrt{3} >$
- c) $< \sqrt{3}; 4 >$
- d) $< -\sqrt{3}; 0 >$
- e) $< -\infty; 0 >$

43. Al resolver:

$$\frac{x+1}{2-x} \le \frac{x}{x+3}$$

se obtuvo como solución:

$$<-\infty$$
; $a>\cup$

Hallar: ab + a + b.

- a) -1
- b) -5
- c) -6
- d) -7 e) -8
- 44. Resolver:

$$\frac{(1-x)(x+x^2)}{-x^2-x+2} \le 0$$

- a) $<-\infty;-2>\cup<0;1$
- b) $<-\infty;2]\cup[3;4>$
- c) $<-\infty;-2>\cup<-1;0>$
- d) $<-\infty;-2>\cup[-1;0]$
- e) d
- 45. Sean las funciones :

$$f(x) = x^2 + 5x + 2m$$

$$g(x) = 2x^2 + 13x + m + 4$$

¿Qué raro?, se observa que al darle cualquier valor a "x" se obtiene que f(x) < g(x), entonces, "m" es :

- a) Mayor que 12.
- b) Menor que -12.
- c) Está entre -12 y 12.
- d) Mayor que -12.
- e) Menor que 12.

c) 3

46. Indicar el menor número "n" entero que permita :

$$(\sqrt{3} + 2 + x)(\sqrt{3} - 2 - x) < n$$

se verifique para todo "x" real.

- a) 4
- b) 2 e) 10
- d) 6

 El conjunto :

$$A = \left\{ x \, \epsilon \, R \, / \, \frac{(x^2 - 1)(x + 2)}{(x - 1)(x + 1)} \ge 0 \, \right\}, \text{ es :}$$

- a) $[-2;-1> \cup <1;+\infty>$
- b) [-2; -1 >
- c) $[-2;-1> \cup <-1;1> \cup <1;+\infty>$
- d) $<-\infty;-2]\cup<-1;+\infty>$
- e) $<-\infty;-2>\cup<1;+\infty>$

Álgebra

¿Para qué valores de "a" en la inecuación cuadrática siguiente, se cumple que para todo $x \in R$:

$$x^2 + ax - 2 < 2x^2 - 2x + 2$$
?

- a) $a \varepsilon < -6$; 2 >
- b) $a \varepsilon < -10; -7 >$
- c) $a \varepsilon < 1; 3 >$
- d) $a \epsilon < -15; -10 >$
- e) $a \varepsilon < 3; 6 >$
- Determinar en qué conjunto de números negativos debe estar contenido "x", para que :

$$\frac{x^4 - 17x^2 + 60}{x(x^2 - 8x + 5)} > 0$$

- a) $< -\sqrt{12}$; $-\sqrt{5}$ > b) $< -\infty$; $-\sqrt{12}$ >
- c) < -12; 0 >
- d) $< -\infty; -\sqrt{5} >$
- e) $< -\sqrt{5}$; 0 >
- Sean: $a, b \in R$, con 0 < a < b. 50.

Entonces, el conjunto:

$$A = \{x \in R / \frac{1+2b}{1+2a} < \frac{x+b}{x+a} < \frac{b}{a}\}$$

coincide con :

- a) < a; b >
- b) $< 0; \frac{1}{2} >$
- c) < a; 2b >
- d) < 2a : 2b >
- e) < 0; 1 >
- 51. Luego de resolver :

$$x - \sqrt[3]{x^3 - 4x^2 + 7x - 6} > 2$$
,

indicar la suma de valores enteros de "x".

- b) 2

- d) -2
- e) 0
- De la inecuación :

$$\frac{ax+1}{bx+1} \ge \frac{x+a}{x+b}$$

con: a > b > 1.

Hallar el conjunto solución.

- a) <-b;-1
- b) $[-\frac{1}{h};1]$
- d) $<-\infty;-b>\cup[-1;-\frac{1}{h}>\cup[1;\infty>$
- e) $<-\infty;-b$]

Resolver:

$$\frac{\sqrt{-x^2+6x-8}(x^2-5x)}{x-1} \ge 0$$

- c) x ε [2; 4]
- d) x ϵ {2; 4} e) x ϵ <1; 7>
- Si: "S" es el conjunto solucion de la desigualdad:

$$\frac{x^{13}(x+3)^{16}(x-5)^{30}}{(x^3-27)(4x+16)} \ge 0$$

entonces, es verdad que

- a) $[-4;0] \subset S$
- b) $[3; +\infty > \subset S$
- c) $S = < -4;0] \cup < 3; +\infty >$
- d) $[0:3> \cap S = \emptyset$
- e) {-3}⊄S
- Determinar el valor de verdad de las proposiciones :

I. Si:
$$x \varepsilon < -1$$
; $5 > \Rightarrow \frac{3}{2x+5} \varepsilon < 0$; $1 >$

II. Si:
$$x \in [0; 4 > \Rightarrow \sqrt{\frac{16-x}{x+2}} - \sqrt{x} + 1 > 0$$

III. Si:
$$\frac{x-1}{x+3} > x \Rightarrow x < -3$$

- a) FVV
- b) FVF
- c) FFV

- d) FFF
- e) VVV
- 56.

$$x - \sqrt{x^2 - ax - 2a^2} > a$$

Si: a < 0.

- a) < 3a; -2a >
- b) $[-a; \infty >$
- c) $< 2a; a > \cup < -a; \infty >$
- d) $< 2a; a > \cup < -2a; \infty >$
- e) $<-\infty$; $3a>\cup<-a$; $\infty>$
- 57. Determinar, por extensión, el conjunto :

$$A = \{x \in R / x^2 - 4x + 2 < 2x - 10\}$$

- a) $\{-1;0;-1\}$
- b) < -1; 0 >
- c) [-2;3]
- d) { }
- e) < 0:1 >

58. Al resolver:

$$(2x^2+1)(x^2+5x+1)>0$$

se obtiene como solución :

$$x \in R - [m; n]$$

Calcular: mn.

- a) 1 d) -1
- b) -3 e) 0
- c) -4
- 59. Sea: $\sqrt[6]{x+7}(x-5) \ge 0$

¿Entre qué valores está : $\frac{x+1}{y}$?

- a) $<\frac{3}{5};\frac{7}{5}]$ b) $<0;\frac{6}{5}]$ c) $<-\infty;\frac{6}{5}]$
- d) $<1;\frac{2}{5}$] e) $<1;\frac{6}{5}$]
- Dado: $f(x) = ax^2 + bx + c$, tal que: 60.

$$x \in R$$
; $f(x) \ge 0$.

Hallar el mínimo valor positivo de :

$$A = \frac{a + b + c}{b - a}$$

- a) 2
- b) $\frac{5}{3}$
- c) 3

- d) $\frac{7}{2}$
- e) 4
- ¿Cuántas de las proposiciones siguientes son verdaderas?
 - I. Si: $\sqrt{x^2} > 1$, entonces, x > 1
 - II. Si: $\sqrt{-x} > 1$, entonces, $x^2 > 1$
 - III. Si: x < -1, entonces, $x^2 < 1$
 - IV. Si: x > 1, entonces, $x^2 > 1$
 - V. Si: $x^2 < 1$, entonces, x < 1
 - a) 1
- b) 2
- c) 3

- d) 4
- 62. Resolver las inecuaciones :
 - $1. \quad \sqrt{x-3} \ge 2$
 - II. $\sqrt{x-5} < 3$
 - III. $\sqrt{x-8} \ge -3$
 - IV. $\sqrt{x-3} \leq 0$

Indicar el intervalo solución de : 63.

$$\sqrt{x-3} \le \sqrt{7-x}$$

- a) [3;7]
- b) [3;5]
- c) [5;7]
- d) $<-\infty;5$
- e) [5;∞ >
- Sea "S" el conjunto solución de :

$$\sqrt{1-x} - \sqrt{1-3x} > \sqrt{3+x} - \sqrt{3-x}$$

entonces:

- a) $S \subset [-4;1>$
- b) $S = <-3;-1> \cup <0;\frac{1}{2}>$
- c) $S \subset [-5;0>$
- d) $S = <-3;-1> \cup <0;\frac{1}{3}>$
- e) $S \subset \langle -2; 2 \rangle$
- 65. ¿Cuántos valores enteros verifican la inecuación :

$$\sqrt{\frac{3-x}{x+3}} + \sqrt{x+13} > 3 \quad ?$$

- a) 6 d) 4
- b) 7 e) 3
- 66. Hallar el intervalo formado por los valores de "x" que satisfacen la siguiente desigualdad :

$$\frac{2x\sqrt{x-2}-4\sqrt{x-2}}{\sqrt{x-2}\left(x-4\right)}>1$$

- a) $< 4; \infty >$ b) < 2; 4 > c) $< 2; \infty >$

c) 5

- d) $< 0; \infty >$ e) < -2; 4 >
- 67. Resolver:

$$\sqrt{\frac{3x-2}{x+3}} < 2$$

e indicar el número de valores enteros que no la verifican.

- a) 12
- b) 13
- c) 14

- d) 15
- e) 16
- El conjunto solución de la desigualdad : 68.

$$\sqrt{\sqrt{x^2 - 4x} - \sqrt{x - 4}} \ge x - 6$$

está contenido en :

- a) [1; 4]
- b) [4;8> c) <4;6>
- d) $[8; +\infty > e) < -\infty; 4$

Álgebra

El conjunto solución obtenido al resolver :

$$\sqrt{x^2 - x + 1} < \sqrt{4 - x}$$

es: $\langle a; b \rangle$. Indicar: a.b

- a) 4 d) -3
- b) 6 e) -5
- c) 8
- Hallar el intervalo solución de la inecuación : 70.

$$\sqrt{3-x}-\sqrt{4-\sqrt{1-x}}<0$$

- a) [-1;1] b) $<\frac{1}{4};1]$ c) <0;1]
- d) $<\frac{1}{2}$; 2 > e) <-15; 1 >
- Luego de resolver :

$$\sqrt[4]{2-x} + \sqrt{x+2} > x-3$$

Indicar la suma de los extremos finitos del intervalo solución.

- a) 0 d) -1
- b) 2 e) -2
- c) 1

72. Resolver:

$$\sqrt{x^2 - 8x - 20} + \sqrt{13 - x} > -3$$

- a) $<-\infty;-10]\cup[2;13]$
- b) $[13; +\infty >$
- c) $<-\infty;-2]\cup[10;13]$
- d) $[-2;10] \cup [13;+\infty >$
- e) φ
- Indicar el intervalo solución al resolver : 73.

$$3x \le \sqrt{x^2 - 6x + 8}$$

- a) $[0;1] \cup [8;+\infty >$
- b) $< 0; 2 > \cup < 4; +\infty >$
- c) $[0;2] \cup [4;+\infty >$
- d) $<-\infty;0]\cup[4;+\infty>$
- e) $<-\infty; \frac{-3+\sqrt{73}}{8}$]
- 74. Resolver:

$$\frac{-\sqrt{\sqrt[3]{x}-4}+\sqrt[6]{x}}{x-1} \ge 0$$

Indicar el conjunto no solución.

- a) R
- b) [0;64 > b) < 0;64 >
- d) $< -\infty$; 64 > e) R- < 8: $+\infty$ >

75. Resolver:

$$\sqrt{\frac{32-2x}{x+2}} \ge \sqrt{x}$$

Indicar cuántos valores enteros la verifican.

- d) 8
- b) 6 e)12
- c) 7

76. Resolver:

$$\frac{\sqrt{x^2 + 1}}{x^2 + x} < \sqrt{x}$$

- a) $<\frac{\sqrt{2}-1}{2}; \infty >$
- b) $<\frac{\sqrt{\sqrt{2}+1}}{2}$; $\infty>$
- c) $<\frac{\sqrt{\sqrt{2}+1}-1}{2}; \infty >$
- d) $<\frac{\sqrt{4\sqrt{2}+1}-1}{2}; \infty>$
- e) $<\frac{\sqrt{2}}{2};\infty>$
- 77. Considerar los 4 pasos para resolver la desigualdad :

$$\frac{1}{x+9} \le \frac{1}{\sqrt{81-x^2}}$$

Paso 1 : $\sqrt{81-x^2} \le x+9$

Paso 2: $81 - x^2 \le (x + 9)^2$

Paso 3: simplificando

$$\left(x+\frac{9}{2}\right)^2+\frac{315}{4}\geq 0$$

Paso 4: x ER, por lo tanto, la solución es todo R.

Entonces, se puede decir que :

- a) Todos los pasos son correctos.
- b) El primer error se comete en el paso 1.
- c) El primer error se comete en el paso 2.
- d) El primer error se comete en el paso 3.
- e) El único error se comete en el paso 4.
- All resolver : $\frac{|\sqrt{x-2}-6|-\sqrt{x-2}}{|x^2-9|} \ge 0$, se obtiene un 78.

conjunto solución de la forma:

 $[a;b> \cup <c;d]$.

Dar como respuesta : $\frac{(a+d)}{(b+c)}$

- a) 11/5
- b) 9/7
- c) 10/3

- d) 13/6
- e) 12/7

79. Al resolver la ecuación :

$$\sqrt{x^2 - 24x + 144} - \sqrt{x^2 - 12x + 36} \ge \sqrt{x^2 - 6x + 9}$$

se obtiene un conjunto solución de la forma : [a; b]. Hallar: a + b.

- a) 2
- b) 3
- c) 4

- d) 5
- e) 6
- El conjunto solución de la inecuación : 80.

$$\frac{\sqrt{2-|x|}.(1-x^2)}{(|x+3|+x-1)(|x|-2)} \ge 0 \quad \text{es:}$$

- a) < 2; 2 >
- b) [1;2>
- c) [1;1]
- d) < -2; -1
- e) $<-2;-1] \cup [1;2>$
- 81. Resolver:

$$\frac{|x-3|-|4-x|}{\sqrt{x-2}+\sqrt{x-1}} < \frac{\sqrt{x-1}-\sqrt{x-2}}{|x-4|+|3-x|}$$

- a) $x \in [2;1>$
- b) $x \varepsilon[2;3>$
- c) $x \in [2;4>$
- d) $x \in [2;9>$
- e) $x \in [2;7 >$
- 82. Resolver: |2x + 3| = 6, e indicar la suma de soluciones.
 - a) 0
- b) 8
- c) -3

- d) 4
- Una solución de : 83. |2x+3| = |x-1| es:

 - a) $\frac{2}{3}$ b) $-\frac{2}{3}$
- c) 4
- d) $-\frac{1}{4}$ e) $\frac{3}{2}$
- 84. Luego de resolver :

$$||x^3 - 5x^2| - x | 3x - 15 | - | 4x - 20 || = 0$$

Indicar la suma de soluciones obtenidas.

- a) 7
- b) 8
- c) 9

- d) 10
- e) 2
- Hallar los valores de "x" en : 85.

$$|5-|x-3||=|4+|x-3||$$

Indicar la suma de estos.

- a) -2
- b) 0
- c) 5
- d) 6 e) 4

Hallar el conjunto solución de la ecuación mostrada : 86.

$$| | | x^2 - x + 3 | - x^2 - 5x + \sqrt[4]{4} | = | 6x - \sqrt{2} - 3 |$$

- a) $\{1; \sqrt{2}\}$ b) $\{\sqrt{2}; 3\}$ c) $\{\sqrt{2}; \sqrt{3}\}$
- d) R
- e) { }
- 87. Indicar el producto de soluciones de la ecuación :

$$||x-5|+|x-4||=5$$

- d) 14
- b) 10 e) 5
- c) 35
- 88. Luego de resolver :

$$|x-8|-|x-7|=1$$

¿Para cuántos valores se verifica la ecuación mostrada?

- a) 1
- b) 2
- c) 3

- d) 4
- e) Infinitos
- Hallar el único valor entero que verifica la ecuación :

$$|x-1|+|x^2-x|+|x^3-x^2|+|x^4-x^3|+...+|x^{n+1}-x^n|=0$$

- c) 0

- d) $\sqrt[4]{4}$
- e) $\sqrt[6]{64} 1$
- Resolver:

$$\left|\frac{x^2}{x-1}\right| = \left|\frac{x^2 - 16}{x+4}\right|$$

Indicar el conjunto solución:

- b) {2} c) $\{\frac{1}{4}\}$
- d) $\{\frac{4}{3}\}$ e) $\{\frac{4}{5}\}$
- 91. Resolver:

$$\left| x + \frac{8}{x} \right| \le 6$$

- a) [-4; 4]
- b) [-2; 2]
- c) [-3; 3]
- d) [-4; -2] ∪ [2; 4]
- e) [-4; -3] \cup [3; 4]
- 92. Resolver:

$$\left| x + \frac{1}{x} \right| \ge 2$$

- a) R⁺
- b) R⁻
- c) R {0}
- d) $[2; +\infty > -\{5\}$

Álgebra

93. Resolver:

$$\left| \frac{5}{2x-1} \right| \ge \left| \frac{1}{x-2} \right|$$

e indicar un intervalo solución.

a)
$$< -\infty; 1 > b$$
 $< \frac{1}{2}; 5 >$

c)
$$< 3; +\infty >$$

d)
$$[3; +\infty > e) < \frac{1}{2}; \frac{11}{7}$$

94. Si: a, b, m $_{\epsilon}$ R. Resolver para "x".

$$| mx - ab | \le | x | | m - b | + | b | | x - a |$$

- a) R⁺
- b) R⁻
- c) R

- d) R_0^+
- e) R₀

95. Resolver:

$$|2x| < |x - 2006| + |x + 2006|$$

e indicar el número de valores enteros de "x".

- a) 4010
- b) 4009
- c) 4011

- d) 2006
- e) 2001

96. Resolver:

$$\frac{x}{|x|-6} > 0$$

e indicar un intervalo solución.

- a) [-6;0> b) <2;5>

- d) $< 6; +\infty >$ e) $< 0; +\infty >$

97. Resolver:

$$\frac{x^2 |x| - 1}{x^3 - 1} \ge 0$$

- a) [-1;1>
- b) R₀⁺
- c) [-1; 1]
- d) $[-1; +\infty > -\{1\}]$
- e) R {1}

98. Hallar el máximo de :

- a) -2006
- b) 2006
- c) -2005

- d) 2005
- e) 2004

99. Resolver: |3x - 1| < |2x - 3|

a)
$$<-\infty; -2> \cup <\frac{4}{5}; \infty > b) < -\frac{4}{5}; 4 >$$

c)
$$<-4; -\frac{4}{5}>$$
 d) $<-2; \frac{4}{5}>$

d)
$$< -2; \frac{4}{5}$$

e)
$$< -4$$
; $\frac{4}{5} >$

100. Si:
$$|x| = 3\sqrt{3} + 4\sqrt{2}$$
, y

$$|y| = 3\sqrt{6} + \sqrt{27}$$

entonces:

- a) x + |y| < 0
- $\mathbf{b}) |\mathbf{y}| < \mathbf{x}$
- c) |x| |y| > 0
- d) $|y| \le x$ e) |y| - |x| < |
- 101. Al resolver :

$$|xy-1| < y-1006$$

hallar la variación de "x", si "y" toma su mínimo valor

- a) 5 < x < 10
- b) 0 < x < 1
- c) 1 < x < 2
- d) -1 < x < 0
- e) -1 < x < 1
- 102. Resolver:

$$(x-2)^2 + |x-2| < 6$$

- a) < -2;4 > b) < 0;4 >
- c) < 1;5 >
- d) < 1; 4 >
- e) < -2;5 >
- 103. Resolver:

$$| | x - 1 | + x | > \sqrt{-x}$$

- - b) [0:1>

e) _ф

- c) < -5:01
- d) $< -\infty; 0$
- 104. Resolver: |3x + 8| < 9x + 1.

a)
$$<-\infty; -\frac{3}{4}> \cup <-\frac{1}{9}; \frac{7}{6}>$$

- b) $<-\infty; -\frac{3}{4}>$ c) $<-\frac{1}{9}; \frac{7}{6}>$
- d) $<\frac{7}{6}$; $\infty>$
- e) $<-\frac{3}{4};\frac{7}{6}>$
- 105. Resolver:

$$\frac{\mid 2x + 3 \mid - \mid x - 8 \mid}{\mid 2x - 1 \mid - \mid 7x - 8 \mid} \ge 0$$

Indicando su intervalo solución.

- a) $x \in [-11; 1 > \cup < \frac{7}{5}; \frac{5}{2}]$
- b) $x \in [-11; 0 > \cup < \frac{7}{4}; \frac{5}{2}]$
- c) $x \in [-11; 1 > 0 < \frac{7}{5}; \frac{5}{3}]$
- d) $x \in [-11; 0 > 0 < \frac{7}{5}; \frac{5}{3}]$
- e) $x \in [1; \frac{7}{5} > \cup < \frac{5}{3}; +\infty]$

106. Dados los conjuntos:

$$A = \{x \in R / | x - 2 | < | x + 1 | \}$$

$$B = \{x \in R / | x - 4 | + | x - 2 | < | x + 3 | \}$$

entonces : $A \cap B$ es igual a :

- a) <1; 9 > b) <1; ∞ > c) < $\frac{1}{2}$; ∞ >
- d) <1; ∞ > e) < $\frac{1}{2}$; 2 >
- 107. Al resolver:

 $x^2 + x + |x| + 1 \le 0$, podemos afirmar:

- a) $x = \{-1\}$
- b) $x = \{0; 1\}$
- c) x > 0
- d) x < 0
- e) xεφ
- 108. Resolver:

$$\frac{|x|}{x-2006} < 0$$

- a) $< -\infty$; $2006 > -\{0\}$
- b) $< -\infty; 2006 >$
- c) R {2006}
- d) $R^+ \{2006\}$
- e) R
- 109. Resolver:

$$|x^4 - 10| \le |x^2|^2 + 8x^2$$

e indicar un intervalo solución.

- a) $[2; +\infty >$ b) $< -\infty; 0 >$
- c) $< 0; +\infty >$
- d) $<-\infty;-1>$ e) $[1;+\infty>$
- 110. Resolver:

$$|7x-1| \le |3x+1| + |2-4x|$$

- a) < 0;1 >
- b) [0; 1]
- c) R⁺

- d) R_0^+
- e) R
- 111. Resolver e indicar un intervalo solución de :

$$||2 - x| - 3| < 1$$

- a) < -2:0 > b) [4:6 >
- c) [-2;0>
- d) < -3; 0 > e) < 4; 7 >
- 112. Resolver:

$$| | x-1| + x^2 | \le x^2 + 3$$

- a) [0; 5]
- b) [-6; 1]
- c) [-8; 4]
- d) [-8; 2] e) [-2; 4]

113. Dados los conjuntos de números reales :

$$S = \{p \in R / 2p + 3 < 6 - p\}$$

$$T = \{q \in R / | aq + b | < | a + b - aq |; -2b < a < 0\}$$

Entonces : $S \cap T$, es :

- b) <0; 1> c) <0; $\frac{1}{2}$ >
- d) $<-\infty$; 1> e) $<\frac{1}{2}$; 1>
- 114. Dadas las inecuaciones :

$$| x | + y < 1$$

$$x - y < 1$$

Hallar el conjunto de valores de "y", cuando "x" toma su mayor valor entero.

- a) $< -\infty : 0 >$
- b) <-1;1>
- c) $< -\infty; 1 >$
- d) $<-\infty;1>\cup<1;2>$
- e) $<-\infty$; $2>\cup <2$; 4>
- 115. Si: | x | < 3, entonces:

$$\frac{1}{a+6} < \left| \frac{1}{4-x} \right| < a$$

Luego, de "a", se puede afirmar :

- a) a < 1 b) $a < \frac{1}{2}$ c) $a \le 1$

- d) $a \ge 1$ e) $a \le \frac{1}{4}$
- 116. Resolver: $|x^2 3| > x^2 + x$
 - a) $<-\infty;-3>\cup<-\frac{3}{2};\infty>$
 - b) $<-\infty;-3>\cup<-\frac{3}{2};1>$
 - c) $< -\infty; 3 > \cup < 1; +\infty >$
 - d) $< -3; +\infty >$
 - e) $<-3;-\frac{3}{2}>\cup<1;\infty>$

Álgebra -

117. Resolver la desigualdad :

$$|x-4|+|2x+6|>10$$

Dar como respuesta la suma entre el mayor valor entero negativo y el menor entero positivo que verifica la desigualdad.

- d) 2
- c) 1
- 118. Si el conjunto:

$$A = \{x \in R / \sqrt{x^2 - 1} - \sqrt{|x - 1|} \ge 0\},$$

entonces, el conjunto R-A está dado por :

- a) _{\$\phi\$}
- b) [-2;2]
- c) < -2; 2 >
- d) <-2;1> e) [-2;1]

119. Dadas las desigualdades :

$$\sqrt[3]{x^2y^2+2}(x-2)<0$$

$$(y-3)|1+|axy||>0;a<0$$

Luego, podemos afirmar que "x-y" es :

- a) Menor que -2.
- b) Menor que 0.
- c) Menor que 2.
- d) Menor que -1.
- e) Menor que 1.
- 120. Resolver:

$$1 \le \frac{1}{\mid x \mid -1} \le 2$$

e indicar un intervalo solución.

- a) <1;2] b) [-2;-1> c) $[\frac{3}{2};+\infty>$
- d) $<-\infty;-\frac{3}{2}$] e) $[\frac{3}{2},2]$

Claves

0.1							
01.	-	31.	-	61.	С	91.	d
02.	а	32.	-	62.	-	92.	С
03.	b	33.	b	63.	b	93.	d
04.	-	34.	d	64.	d	94.	С
05.	С	35.	-	65.	а	95.	С
06.	е	36.	e	66.	а	96.	d
07.	а	37.	е	67.	d	97.	d
08.	а	38.	-	68.	b	98.	b
09.	С	39.	-	69.	d	99.	d
10.	-	40.	а	70.	С	100.	b
11.	а	41.	-	71.	а	101.	b
12.	е	42.	b	72.	С	102.	b
13.	а	43.	d	73.	е	103.	а
14.	d	44.	d	74,	d	104.	d
15.	d	45.	d	75.	а	105.	а
16.	b	46.	а	76,	d	106.	а
17.	е	47.	С	77.	b	107.	е
18.	а	48.	а	78.	d	108.	а
19.	С	49.	а	79.	С	109.	е
20.	е	50.	b	80.	b	110.	е
21.	b	51.	а	81.	С	111	a
22.	d	52.	d	82.	С	112.	е
23.	С	53.	d	83.	b	113.	е
24.	b	54.	С	84.	b	114.	b
25.	b	55.	e	85.	d	115.	d
26.	d	56.	b	86.	d	116.	b
27.	b	57.	d	87.	d	117.	b
28.	d	58.	а	88.	е	118.	d
29.	е	59.	е	89.	е	119.	d
30.	b	60.	С	90.	е	120.	е